
Collecting Insights into How Novice Programmers
Naturally Express Programs for Robots

Rajeswari Hita Kambhamettu1, Michael Jae-Yoon Chung2, Vinitha Ranganeni3, and Patrı́cia Alves-Oliveira3

Abstract— End-user programming of robots holds promise
to help users lacking specialized software development skills
customize robot behaviors. To enable such novice control, it is
essential to design an end-user robot programming system that
best supports how users naturally express what they want the
robots to do. In this paper, we conducted a two-part online
user study with fifteen participants to analyze how novice
programmers intuitively solve robot-related tasks (part 1) vs
how they code robot behaviors using a static version of Cozmo
Codelab, a visual block-based robot programming system (part
2).

Our part 1 results show that novice programmers do not
intuitively consider programming tasks using an imperative
procedural programming paradigm, which is typical of current
visual block-based robot programming systems. Additionally,
we find that users who initially adopted an imperative proce-
dural programming paradigm (in part 1) for task completion
in part 2 wrote less accurate robot programs. The mismatch
between natural tendencies and enforced coding structure has
implications for the design of easily learned end-user robot pro-
gramming interfaces and systems. It suggests that block-based
visual imperative programming systems, though at present one
of the most accessible ways to program robots, could benefit
from new interfaces and targeted design enhancements.

I. INTRODUCTION

Robots are becoming increasingly ubiquitous across do-
mains that require ongoing human interactions.1 Program-
ming such robots in human environments to be effective for
every unique use case and environment remains a bottleneck
given the complex interactive nature of desired robot behav-
iors [1] and individual user preferences [2].

Research in end-user robot programming [3]–[6] aims
to create tools that enable users with little or no software
development experience to write programs involving robots
on their own through intuitive interfaces. While research in
this field has progressed substantially, most non-academic
robot programming systems targeting novice programmers
are block-based visual programming systems, often wrapped

*This work was supported by the University of Washington Allen School
Postdoc Research Award attributed to P. Alves-Oliveira.

1Rajeswari Hita Kambhamettu is affiliated with the School of
Computer Science, Carnegie Mellon University, Pittsburgh, USA
rkambham@andrew.cmu.edu

2Michael Jae-Yoon Chung is affiliated with Vicarious
mchung@vicarious.com

3Patrı́cia Alves-Oliveira and Vinitha Ranganeni are affil-
iated with the Paul G. Allen School of Computer Science
and Engineering, University of Washington, Seattle, USA
patri,vinitha@cs.washington.edu

1IEEE Spectrum Article “Why Indoor Robots for Commercial Spaces Are
the Next Big Thing in Robotics”: https://spectrum.ieee.org/
indoor-robots-for-commercial-spaces

Researcher

Researcher

Participant

How would
you solve this

 task?

"The robot first
greets the customer
when they walk up."

"The robot will listen
if the customer
says "burger"."

Natural Language Approach

How would you
solve this task

using block-based
programming?

Programming Approach

Participant

Fig. 1. We investigated how novice programmers think about programming
robots through two tasks. (Top) A natural language approach, where
participants verbally instruct the robot.(Bottom) A block-based program-
ming approach, where participants implement the task using block-based
programming.

around an imperative procedural programming language.
Such systems also incorporate a robot-specific sensing and
control library and a block-based visual programming inter-
face. An example of a commonly used visual programming
tool is Scratch [7], which introduces children and novice
adult users to programming (and controlling a robot using
this language). Though Scratch is among the best known
and prominently used visual programming languages, others
are surveyed in [8], [9].

There are known limitations with visual coding languages,
such as challenges with expressing concurrency. Our key
insight is that one of the main challenges for non-expert
users who want to program robots is cognitive disso-
nance caused by the mismatch between the programming
paradigm they naturally adapt to express desired robot
behaviors versus the programming paradigm supported
by the widely used block-based robot programming
system, i.e., imperative programming. (See Section IV,
Table 1 for definitions of the various programming paradigms
we consider in this study.)

https://spectrum.ieee.org/indoor-robots-for-commercial-spaces
https://spectrum.ieee.org/indoor-robots-for-commercial-spaces

Natural Language Approach

Task 1 Task 2

Programming Approach

Task 1 Task 2

Step 1: The robot takes the user’s
order when they are ready.
Step 2: The robot takes the user's
order and tells the user their order
will be ready soon.

I am ready to
order.

What would
you like to

order?

Can I have
a burger? Your order

will be ready
soon.

Cozmo
pushes
cube

Cube glows
red

Participant
pushes cube

Step 1: The user and robot take at least
three turns each movingthe cube 0.1m at
every turn.
Step 2: The cube glows red when the robot
has finished its turn.
Step 3: Assume the user takes 5s to move
the cube.

Fig. 2. Study Outline. We investigated two approaches, natural language and programming interface. For each approach, the participants completed the
same two tasks. (Left) In task 1, the robot takes the user’s order. (Right) In task 2, the robot and user collaborate to push a cube. Each task consists of
several steps.

We aim to inform the development of new programming
tools by first comparing these paradigms. Towards this goal,
we conducted a two-part online pilot study to collect insights
about how users naturally express what they want a robot to
do vs how they actually program a robot, and the inherent
challenges of a possible mismatch. In part 1, we asked
participants to instruct the robot (using diagrams, language,
flowcharts, etc.) to perform the two tasks we designed, and
we analyzed their responses. We also studied the accuracy
level of novice programmers, i.e., whether the robot correctly
performed the tasks they specified. In part 2, we studied
the effect of participants using a standard non-expert robot
programming system that supports the imperative program-
ming paradigm. We asked them to implement the same
two tasks as in part 1, this time by using a block-based
visual programming system. The system is based on Cozmo
Codelab because our tasks were designed to be replicated
with the Cozmo robot. 2.

Our work brings key insights into the mental models
of novice programmers when ’thinking out loud’ about
programming a robot and how this can influence their
programming performance. This work has a broader impact
in the field of end-user programming for robots, especially on
the design of the interface of end-user programming systems.

II. RELATED WORK

Research in end-user robot programming aims to achieve
easy to use visual interfaces by designing an appropriate ab-
straction level for target use cases [4], [10]–[13]. For exam-
ple, researchers investigated adopting flowcharts [10], [11],
[14], state machines [13], behavior trees [15], block-based
imperative programming languages [4], [16], and trigger-
action rules [17] with relevant visualization interfaces. Robot
programming systems have also been built by taking a
human-centered approach that provides specialized ways
to express frequently desired concurrent actions [12], [16].

2Cozmo codelab: https://developer.anki.com/blog/news/
cozmo-code-lab/index.html

Images of Cozmo and cubes in Fig.2 are adapted from https://www.
kinvert.com/

More recently, researchers have started to evaluate a non-
expert-friendly robot programming interface like CoBlox
with a larger group of novice adult users (e.g., N=67) [18].
However, to our knowledge, no robot programming system
has been built to support the target users’ intuitive program-
ming paradigm.

Beyond end-user programming of robots, researchers have
investigated the mental models novices use with trigger-
action systems to program smart home applications [19]
and analyzed how users of a commercially available trigger-
action programming system debugged programs, including
smart home applications [20], with the goal of helping future
programming systems better support end-user programmers.
Researchers also investigated how a target user group (chil-
dren) solves problems to design a new programming lan-
guage [21].

III. METHODS

We now describe the methodology we employed for our
online study.

Our study results are consistent with findings in prior
work, which showed the applicability of human-computer
interaction techniques to programming tools [22].

Our exploratory study focused on the following two re-
search questions:

RQ.1 How do paradigms that novice programmers ap-
ply to control a robot map onto different programming
paradigms? (study part 1)

RQ.2 How does an imperative programming interface
affect the programming paradigm that novices apply?
(study part 2)

A. Participants

We conducted our user study with 15 participants (9
female). We also conducted studies with 3 additional people
to test and refine the study; these individuals were not
included in the main analysis. Our participants were between
20−36 years old and worked in a variety of disciplines, such
as finance, marketing, and biology. Self-reported ethnicity
revealed that 13 were of Asian descent, 5 White, and 2 His-
panic. Participants were recruited by individually reaching

https://developer.anki.com/blog/news/cozmo-code-lab/index.html
https://developer.anki.com/blog/news/cozmo-code-lab/index.html
https://www.kinvert.com/
https://www.kinvert.com/

(a) (b) (c) (d) (e)

Fig. 3. An example of solving Task 2 using block-based programming. (a) When the program loop repeats for three iterations. (b) In every iteration,
Cozmo navigates to the cube, (c) moves the cube 10cm, (d) sets the cube’s color to red, and (e) waits five seconds for the user to push the cube.

out to peers who met the inclusion criterion (see below). We
obtained IRB approval for the studies from the University of
Washington. Participants gave informed consent and received
a gift card of $10/hour for their study-related work.

Since this was a pilot study, our sole inclusion criteria
was that the participants had taken at most one program-
ming class/experience. Eight participants had never taken a
programming class; four had experience in Scratch, a block-
based programming language after which our programming
tasks were modeled; and six had experience with robots.
On a scale from one to five, seven participants self-reported
that they had a level one programming proficiency, four
self-reported a level two programming proficiency, and four
self-reported a level three proficiency. We selected these
participants from fields showing recent increases in robotics
usage, i.e. healthcare, finance, and design.

B. Procedure

The study was exploratory in nature: its purpose was
to elicit information about what programming paradigms
novice programmers apply when programming social robots.
Participants were asked to complete tasks using two different
approaches, as shown in Fig.1: part 1, a descriptive approach,
and part 2, a block-based programming approach. They
were instructed to think aloud throughout each exercise and
encouraged to talk through difficulties rather than asking
questions. We designed our study to be completed in under
one hour to limit participant fatigue.

The user study was conducted virtually through Zoom.3

Participants were first asked to sign a consent form and
complete a pre-questionnaire with questions about their
demographic and programming skills. Next, in part 1, they
were given two tasks to be completed using their preferred
approach (e.g., diagrams or spoken instructions). While
there was no physical robot involved in this study, the tasks
were designed to be reproduced with the Cozmo robot,
pictured in Fig.2. For the first task, participants were given
the following prompt, as elucidated by (Fig.2):

3Zoom: http://zoom.us

In this task, the robot will be taking the order of a
customer at a restaurant. The menu is as follows:

Foods:
- Burger: $5
- Pizza: $4

Drinks:
- Soda: $2

The robot should take the user’s order once the
user is ready. The robot will then take the user’s

order and tell them “your order will be ready
soon.”

Participants were given five minutes to complete the task
via any means they preferred (e.g., designing a diagram,
speaking out loud, story-boarding). There was a time limit
for every task to ensure the completion of all the tasks during
the study session. All participants choose to speak aloud their
method of directing the robot to complete this task.

For the second task, participants were given the following
prompt, also to be completed in a non-specified approach,
depicted in Fig.2:

You will be working with the robot to move cube 1.
You must each take at least three turns moving the
cube 0.1m at every turn. The cube should glow red
once the robot is finished with its turn; assume that

the user takes 5 seconds to move the cube.

This completed part 1, where participants shared their
unique approaches.

Next, for part 2, the researcher walked through the docu-
mentation of the blocks participants would use to complete
the same tasks as in part 1 but using the block-based
programming approach (see Fig.2). Participants were also
given an example of how to use the blocks to complete small
programming tasks involving the robot. The tasks remained
the same for both study parts to achieve a fair compari-
son. The block-based programming interface, modeled after

http://zoom.us

Fig. 4. Accuracy in accomplishing each part of the natural speaking tasks
when various paradigms were used.
() Task 1, Step 1: The robot takes the user’s order when user is ready.
() Task 1, Step 2: The robot takes the user’s order and tells the user their
order will be ready soon.
() Task 2, Step 1: The user and robot take at least three turns each, moving
the cube 0.1m at every turn.
() Task 2, Step 2: The cube glows red when the robot has finished its
turn.
() Task 2, Step 3: Assume the user takes 5s to move the cube.

Cozmo’s CodeLab, was static so participants could not run
their code. Further, they did not use a Cozmo robot in the
study because of the virtual nature of the study.

After this introduction, participants were directed to create
an account on LucidChart4 to complete their tasks. They
then completed the aforementioned two tasks in LucidChart
by dragging and dropping blocks onto their workspace,
as illustrated by Fig.3. They were given ten minutes to
complete each task.

Following the completion of the block-based programming
tasks, the participants completed a post-study questionnaire,
which included the following questions:

• Did you use the same strategy to think about the task
with and without the blocks?

• What was your top priority in completing the task?
• How did the block-based programming align with how

you would approach this task?
These questions were intended to complement knowledge
gained during the study from researcher observations. Upon
completing the questionnaire, participants were thanked for
their participation and time, and a gift card was sent to them.

Each participant took between forty-five minutes to about
one hour to complete both study parts. We analyzed about
sixteen hours of footage and manually scribed the users’
cognitive process for each task in part 1 and part 2. We
then categorized the users’ responses into their subsequent
paradigms.

IV. RESULTS AND DISCUSSION

Our analysis is a combination of quantitative and qualita-
tive data collected from the study and from the questionnaires
that contained open-ended questions. The nature of our

4LucidChart, a free diagramming tool: https://lucid.app

Fig. 5. Frequency with which a paradigm is used during the natural
programming approach. T1 refers to task 1, and T2 refers to task 2. We
observed that participants naturally adopt a wide array of programming
paradigms, with the majority using a declarative approach when thinking
naturally about programming the tasks.

quantitative results is mostly descriptive since sample size
for our study was small and did not allow for statistically
robust comparisons. However, our results yield new insights
about the mental models of novice programmers. Addition-
ally, we bring a deeper understanding of the phenomena
by combining descriptive statistics with qualitative results.
Please contact study authors for a detailed transcript of study
activities and analyses.

The results of the study address the research questions
presented in Section III, and we divide results according
to these questions. To code the programming paradigms
participants applied, we used the coding scheme described
in Table I [23]. We selected two widely used yet sufficiently
distinctive imperative programming paradigms, i.e., proce-
dural and object-oriented. We also selected two declarative
programming paradigms based on either their popularity
among novice users (e.g., event-driven programming) or
their frequent adoption in robot and intelligent programming
systems (e.g., constraint programming). We consistently use
the terms ‘approach,’ ‘task,’ and ‘steps’ to describe our
results; for a visual understanding of these terms, see Fig.2.
In categorizing each participant’s response, we first broke
down each task into steps, or the most rudimentary part of
the task. Then, we assigned each step to a category based on
the participant’s response and the rules of each paradigm, as
shown in Table I.

RQ.1 How do paradigms that novice programmers
adopt to control a robot map onto different program-
ming paradigms? (study Part 1)

Participants tended to adopt a more declarative constraint
or declarative event-centric programming approach. Data
from the post-questionnaire revealed that 11 of the 15
participants indicated that their top priority in completing the
tasks was thinking about all the combinations or possibilities
the robot might encounter during the task while working
within the constraints presented in the task steps. As shown
in Fig.5, in Task 1, about 40% of participants used

https://lucid.app

TABLE I
TAXONOMY OF THE MOST COMMON PROGRAMMING PARADIGMS. WE USED THESE PARADIGMS AS THE CODING SCHEME FOR THIS STUDY [24].

PROGRAMMING PARADIGM DEFINITION EXAMPLE
Imperative Describes the task in a sequence of commands. ”Move 10 steps, listen to a customer’s order, say

your order will be ready soon”
Imperative: Procedural In the task description, repeated commands are

referred to as sub-routines, and concepts like
“goto” or “repeat” are used.

”Repeat 3 times: Robot moves 10 steps and
robot turns 90 degrees”

Imperative: Object-Oriented Programming Describes the task by using objects that are
connected and manipulated by methods.

“Robot - say ‘hi’ - human”
“Robot - locate - cube”

Declarative Describes the task in terms of rules. “Whenever the robot sees a cube, it should move
the cube forward”

Declarative: Event-Driven Describes the task as trigger and action pairs. “Once the user is finished talking, the robot will
respond, saying ’Your order will be ready soon”’

Declarative: Constraint Describes the task in terms of constraints, e.g.,
whenever/wherever/if in certain situations, the
robot should/should not take a certain action.

“Whenever the customer orders something that
is not on the menu, the robot should say the
menu items again”

a declarative event-driven approach, whereas 27% of
participants used a procedural imperative approach, 23%
used an object-oriented programming imperative approach,
and 10% used a constraint-driven declarative approach. For
Task 2, 42% of participants used a procedural imperative
approach—most likely because the of the steps’ sequential
instruction. Additionally, 31% of participants used a declar-
ative constraint-driven approach, 22% used a declarative
event-driven approach, and 5% used an imperative object-
oriented programming approach.

When comparing participants with and without pro-
gramming experience, the one difference in program-
ming paradigm used concerns object-oriented programming
(OOP). Four of seven participants who had taken a
programming course used imperative OOP for task 1, but
only one of eight non-programmers used OOP for task 1. In
task 2, only participants who had taken a programming
course used the OOP paradigm to solve the programming
tasks. This suggests that object-oriented programming may
not be an intuitive paradigm for non-programmers but is
more comfortable for those with more formal programming
experience.

Overall, the results of the natural programming portions
of both scenarios indicated that:

An imperative procedural programming paradigm –
be it procedural, or OOP – is not necessarily the

most obvious or natural way that novice users
express programs for the robot.

The fact that most participants did not use an imperative
procedural programming approach across both tasks suggests
that novice programmers tend to rely less on sequential or
imperative paradigms.

More participants used an imperative procedural approach
to complete Task 2, likely because the step description was

outlined sequentially. Nonetheless, the majority of partici-
pants did not naturally adopt that approach. As our analysis
shows, six of 15 participants used an imperative procedural
approach to solve one of the steps in Task 1, but only one
participant used that approach to solve the entirety of Task
1.

Nine participants used imperative procedural programming
to complete at least one step of the task, but only one par-
ticipant naturally used imperative procedural programming
to solve Task 2 as a whole. Both participants who naturally
used this paradigm throughout their respective tasks indicated
that they “thought [of themselves] as the robot and went
through how I would complete the task.” Perhaps because
the participants completed the task as the robot rather than
as the controller of the robot, they only considered the
robot when completing the tasks and did not consider the
robot’s interactions with other entities, such as a cube or a
customer. Additionally, one of these participants stated that
they chose a “systematic approach structured on whether
or not the robot could do something.” This suggests that
novice programmers use a more declarative event-driven and
declarative constraint-driven approach to program robots. If
a social robot programming language intends to model users’
natural mental models, then it should include declarative
elements in the programming language.

RQ.2 How does an imperative programming in-
terface affect the programming paradigm that non-
programmers adopt? (study part 2)

We found that the approaches participants chose to
implement the block-based programming steps did not
consider the edge cases they mentioned in part 1 of the
study, specifically when the robot acts in response to a user.
Thus, 11 participants indicated that they did not use the same
approach to complete the block-based programming tasks
compared to the natural programming task. Our qualitative

results indicate that several of these participants noted that
the block-based programming style had several limitations,
including the fact that blocks allowed for less flexibility in
programs, placed restraints on how to solve the task, and
did not let them explore the more detailed approaches they
envisioned in the natural programming section.

We evaluated the accuracy of the participants’ block-based
programs by dividing each task into the steps outlined in
Fig.4, which served as test cases. We then indicated a binary
score for each step in the task (1 for passing the test and 0 for
not passing it) and evaluated the block-based programs based
on these test cases. As shown in Fig.4, participants who
used an imperative procedural paradigm in their natural
programming approach often achieved lower accuracy
than those who chose other programming approaches.
For example, in Task 2, participants naturally using an
imperative procedural approach had an average accuracy of
60 − 75% per step, whereas those using declarative event-
driven programming had an average accuracy of 67−85% per
step, those using declarative constraint-driven programming
had an average accuracy of 85 − 100% per step, and those
using imperative OOP had an average accuracy of 100% per
step.

We also compared participants with and without program-
ming experience. For Task 1, participants with no prior
programming experience had an average of 71% accuracy,
while those who had taken one programming course had an
average accuracy of 75%, a nominal difference. However, in
Task 2, participants with no prior programming experience
had an average of 70% accuracy, while participants who had
taken one programming course had an average accuracy of
97%. This difference in accuracy is potentially attributable
to the human-robot interaction component of the task and
its many constraints. Upon further analysis of the studies,
we found that seven of the eight non-programmers forgot
to account for at least one of the constraints included in
the task. The step in Task 2 that participants most often did
not accurately complete was step 1 (refer to Fig.2 for the
step description). Three of eight non-programmers (37.5%)
used constraint-driven programming to solve this step, while
four of seven participants (57%) with prior programming
experiences used constraint-driven programming. Perhaps
because this task included constraints, participants with prior
programming experience thought to employ a constraint-
driven approach while those with no prior experience did
not modify their paradigm to align with the task. Only
one participant scored 100% accuracy across both tasks.
This participant has taken an introductory programming class
before and used an OOP approach for both tasks. In Task 1,
the participant used the ‘menu items,’ ‘user,’ and ‘robot’ as
objects that they modified using methods such as adding food
to the order. In Task 2, the participant used the ‘robot,’,‘user,’
and ‘cube’ as entities with methods to move the cube. The
high accuracy could be attributed to the OOP paradigm the
participant originally used, which allowed them to consider
all constraints of the task while also ensuring the actions
were robustly defined. Nine participants made the mistake of

executing an action without considering an initial constraint.
For example, in Task 1, participants would program the robot
to say “What would you like to order?” before checking if
the customer was ready.

This result suggests that if novice programmers naturally
think in an imperative or imperative procedural way, they are
less likely to develop accurate programs. If user accuracy
is the principal objective of a social robot programming
language, developers should consider employing a declar-
ative programming paradigm to better align with novice
programmers’ natural programming tendencies.

In sum, when analyzing the performance of participants
based on their natural programming approaches, we found
that:

Participants who naturally used an imperative
procedural style had less accurate block-based

programs than those who used different paradigms.

V. LIMITATIONS

This study has the following limitations:
• Because this was a pilot study, we recruited a small

sample size of mostly undergraduate students in non-
technical STEM majors rather than a more represen-
tative group. Because our sample does not reflect a
broader set of novice programmers, we may have over-
looked insights. To make more solid claims, we want
to recruit a larger and more diverse sample size.

• We considered only two main categories of paradigms
and two subcategories of these paradigms. However, in
practice, there are many more programming paradigms
that programmers use. Heavily constraining our as-
sumptions to consider only imperative and declarative
programming could potentially bias our results.

• Though all of our tasks can be reproduced with the
Cozmo robot, in the interest of the study brevity and
considering the remote study setting, we did not instruct
participants to use a robot when programming their
tasks. However, including the robot in the study itself
would have better reflected the intended setting for
participants to program.

• The way we instructed study participants may have
affected their approach. In the pilot study, we wanted
to keep the the task description as simple as possible
so participants felt comfortable verbally (or otherwise)
expressing their responses. We also included elements
of concurrency in each task since it is a known lim-
itation of visual block-based programming. However,
we noticed that the task description potentially altered
the paradigm employed by the participants to solve the
tasks. In future work, we plan to ensure that our task
descriptions do not influence participants by iterating
over small test samples to address this issue.

VI. CONCLUSION

In this paper, we investigated how novice users most
accurately express intent with respect to robot behavior. We

conducted a two-part pilot study with fifteen participants
who were first asked to (1) naturally express how they
would program a robot to accomplish predefined tasks (all
participants chose verbal expression), and then asked to (2)
program the robot to accomplish the same predefined tasks.
Based on our analysis, we share the following main insights:

• Insight 1: Novice users apply different paradigms
when they naturally think through robot control tasks
vs when they actually develop programs for robots.
They adapt their programming style to the end-user
programming system they are faced with, which might
not be the optimal way for the user to interface with a
programming system and could hinder the development
of desirable behaviors for the robot due to the mismatch
of mental models.

• Insight 2: Novice users who naturally express
their programs in non-imperative paradigms tend
to write more accurate programs. Those who use
imperative paradigms write programs that are less
accurate than those who approach programs with
more natural paradigms. Thus, an imperative-style
end-user programming system might prevent users
from programming more accurately.

We believe these two primary insights, coupled with other
findings reported in the study, could inform the development
of new end-user programming tools that are more aligned
with how novices naturally think about specifying robot
behavior.

REFERENCES

[1] P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human–robot inter-
action review and challenges on task planning and programming,”
International Journal of Computer Integrated Manufacturing, vol. 29,
no. 8, pp. 916–931, 2016.

[2] G. Ajaykumar and C.-M. Huang, “User needs and design opportu-
nities in end-user robot programming,” in Companion of the 2020
ACM/IEEE International Conference on Human-Robot Interaction,
2020, pp. 93–95.

[3] D. F. Glas, T. Kanda, and H. Ishiguro, “Human-robot interaction
design using interaction composer eight years of lessons learned,” in
International Conference on Human-Robot Interaction. ACM/IEEE,
2016, pp. 303–310.

[4] J. Huang, T. Lau, and M. Cakmak, “Design and evaluation of a rapid
programming system for service robots,” in ACM/IEEE International
Conference on Human Robot Interaction (HRI), 2016, pp. 295–302.

[5] A. Kubota, E. I. Peterson, V. Rajendren, H. Kress-Gazit, and L. D.
Riek, “Jessie: Synthesizing social robot behaviors for personalized
neurorehabilitation and beyond,” in ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), 2020, pp. 121–130.

[6] D. Porfirio, E. Fisher, A. Sauppé, A. Albarghouthi, and B. Mutlu,
“Bodystorming human-robot interactions,” in Symposium on User
Interface Software and Technology, 2019.

[7] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. East-
mond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
et al., “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, 2009.

[8] E. Coronado, F. Mastrogiovanni, B. Indurkhya, and G. Venture,
“Visual programming environments for end-user development of in-
telligent and social robots, a systematic review,” Journal of Computer
Languages, vol. 58, p. 100970, 2020.

[9] M. A. Kuhail, S. Farooq, R. Hammad, and M. Bahja, “Characterizing
visual programming approaches for end-user developers: A systematic
review,” IEEE Access, 2021.

[10] D. Glas, S. Satake, T. Kanda, and N. Hagita, “An interaction design
framework for social robots,” in Robotics: Science and Systems, vol. 7,
2012, p. 89.

[11] S. Alexandrova, Z. Tatlock, and M. Cakmak, “Roboflow: A flow-
based visual programming language for mobile manipulation tasks,” in
International Conference on Robotics and Automation. IEEE, 2015,
pp. 5537–5544.

[12] J. Diprose, B. MacDonald, J. Hosking, and B. Plimmer, “Designing
an api at an appropriate abstraction level for programming social robot
applications,” Journal of Visual Languages & Computing, vol. 39, pp.
22–40, 2017.

[13] F. Steinmetz, A. Wollschläger, and R. Weitschat, “Razer-a human-
robot interface for visual task-level programming and intuitive skill
parameterization,” Robotics and Automation Letters, vol. 3, no. 3, pp.
1362–1369, 2018.

[14] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choregraphe: a
graphical tool for humanoid robot programming,” in The International
Symposium on Robot and Human Interactive Communication. IEEE,
2009, pp. 46–51.

[15] C. Paxton, F. Jonathan, A. Hundt, B. Mutlu, and G. D. Hager,
“Evaluating methods for end-user creation of robot task plans,” in
International Conference on Intelligent Robots and Systems. IEEE,
2018, pp. 6086–6092.

[16] M. J.-Y. Chung, J. Huang, L. Takayama, T. Lau, and M. Cakmak,
“Iterative design of a system for programming socially interactive
service robots,” in International Conference on Social Robotics, 2016,
pp. 919–929.

[17] N. Leonardi, M. Manca, F. Paternò, and C. Santoro, “Trigger-action
programming for personalising humanoid robot behaviour,” in Con-
ference on Human Factors in Computing Systems, 2019, pp. 1–13.

[18] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, 2018,
pp. 1–12.

[19] J. Huang and M. Cakmak, “Supporting mental model accuracy in
trigger-action programming,” in Proceedings of the 2015 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing,
2015, pp. 215–225.

[20] W. Brackenbury, A. Deora, J. Ritchey, J. Vallee, W. He, G. Wang,
M. L. Littman, and B. Ur, “How users interpret bugs in trigger-action
programming,” in Proceedings of the 2019 CHI conference on human
factors in computing systems, 2019, pp. 1–12.

[21] J. F. Pane, A programming system for children that is designed for
usability. Carnegie Mellon University, 2002.

[22] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers
are users too: Human-centered methods for improving programming
tools,” Computer, vol. 49, no. 7, pp. 44–52, 2016.

[23] C. Kelleher and R. Pausch, “Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers,” ACM Comput. Surv., vol. 37, no. 2, p. 83–137, jun
2005. [Online]. Available: https://doi.org/10.1145/1089733.1089734

[24] M. Gabbrielli and S. Martini, Programming Languages: Principles
and Paradigms, 1st ed. Springer Publishing Company, Incorporated,
2010.

https://doi.org/10.1145/1089733.1089734

	I Introduction
	II Related Work
	III Methods
	III-A Participants
	III-B Procedure

	IV Results and Discussion
	V Limitations
	VI Conclusion
	References

